
Introduction to
Javascript 2

Variables: var, let, const
Declare a variable in JS with one of three keywords:

// Function scope variable

var x = 15;

// Block scope variable

let fruit = 'banana';

// Block scope constant; cannot be reassigned

const isHungry = true;

You do not declare the datatype of the variable before using it ("dynamically typed")

http://stackoverflow.com/questions/1517582/what-is-the-difference-between-statically-typed-and-dynamically-typed-languages

Function parameters
function printMessage(message, times) {

 for (var i = 0; i < times; i++) {

 console.log(message);

 }

}

Function parameters are not declared with var, let, or const

Understanding var
function printMessage(message, times) {

 for (var i = 0; i < times; i++) {

 console.log(message);

 }

 console.log('Value of i is ' + i);

}

printMessage('hello', 3);

Q: What happens if we

try to print "i" at the

end of the loop?

Understanding var
function printMessage(message, times) {

 for (var i = 0; i < times; i++) {

 console.log(message);

 }

 console.log('Value of i is ' + i);

}

printMessage('hello', 3);

The value of "i" is readable
outside of the for-loop because
variables declared with var
have function scope.

Function scope with var
var x = 10;
if (x > 0) {
 var y = 10;
}
console.log('Value of y is ' + y);

- Variables declared with "var" have function-level scope and do not
go out of scope at the end of blocks; only at the end of functions

- Therefore you can refer to the same variable after the block has
ended (e.g. after the loop or if-statement in which they are declared)

Function scope with var

But you can't refer to a variable outside of the function in which it's
declared.

Understanding let
function printMessage(message, times) {

 for (let i = 0; i < times; i++) {

 console.log(message);

 }

 console.log('Value of i is ' + i);

}

printMessage('hello', 3);

Q: What happens if we

try to print "i" at the end

of the loop?

Understanding let
function printMessage(message, times) {

 for (let i = 0; i < times; i++) {

 console.log(message);

 }

 console.log('Value of i is ' + i);

}

printMessage('hello', 3);

let has block-scope
so this results in an
error

Understanding const
let x = 10;
if (x > 0) {
 const y = 10;
}
console.log(y); // error!

Like let, const also has block-scope, so accessing the variable outside
the block results in an error

Understanding const

const y = 10;
y = 0; // error!
y++; // error!
const list = [1, 2, 3];
list.push(4); // OK

const declared variables cannot be reassigned.

However, it doesn't provide true const correctness, so you can still modify
the underlying object

- (In other words, it behaves like Java's final keyword and not C++'s
const keyword)

Contrasting with let
let y = 10;
y = 0; // OK
y++; // OK
let list = [1, 2, 3];
list.push(4); // OK

let can be reassigned, which is the difference between const and let

Variables best practices

- Use const whenever possible.

- If you need a variable to be reassignable, use let.

- Don't use var.

- You will see a ton of example code on the internet with var since const and let are relatively

new.

- However, const and let are well-supported, so there's no reason not to use them.

(This is also what the Google and AirBnB JavaScript Style Guides recommend.)

http://caniuse.com/#search=const
http://caniuse.com/#search=let
https://google.github.io/styleguide/jsguide.html#features-use-const-and-let
https://github.com/airbnb/javascript#variables

Variables best practices

- Use const whenever possible.

- If you need a variable to be reassignable, use let.

- Don't use var.

- You will see a ton of example code on the internet with var since const and let are relatively

new.

- However, const and let are well-supported, so there's no reason not to use them.

(This is also what the Google and AirBnB JavaScript Style Guides recommend.)

Aside: The internet has a ton of
misinformation about JavaScript!

Including several "accepted" StackOverflow answers,
tutorials, etc. Lots of stuff online is years out of date.

Read carefully.

http://caniuse.com/#search=const
http://caniuse.com/#search=let
https://google.github.io/styleguide/jsguide.html#features-use-const-and-let
https://github.com/airbnb/javascript#variables

Types
JS variables do not have types, but the values do.

There are six primitive types (mdn):

- Boolean : true and false
- Number : everything is a double (no integers)
- String: in 'single' or "double-quotes"
- Symbol: (skipping this today)
- Null: null: a value meaning "this has no value"
- Undefined: the value of a variable with no value assigned

There are also Object types, including Array, Date, String (the object wrapper
for the primitive type), etc.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures
https://developer.mozilla.org/en-US/docs/Glossary/Boolean
https://developer.mozilla.org/en-US/docs/Glossary/Number
https://developer.mozilla.org/en-US/docs/Glossary/String
https://developer.mozilla.org/en-US/docs/Glossary/Symbol
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/null
https://developer.mozilla.org/en-US/docs/Glossary/Undefined
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures

Numbers
const homework = 0.45;
const midterm = 0.2;
const final = 0.35;
const score =
 homework * 87 + midterm * 90 + final * 95;
console.log(score); // 90.4

Numbers
const homework = 0.45;
const midterm = 0.2;
const final = 0.35;
const score =
 homework * 87 + midterm * 90 + final * 95;
console.log(score); // 90.4

- All numbers are floating point real numbers. No integer type.
- Operators are like Java or C++.
- Precedence like Java or C++.
- A few special values: NaN (not-a-number), +Infinity, -Infinity
- There's a Math class: Math.floor, Math.ceil, etc.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/NaN
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math

Strings
let snack = 'coo';
snack += 'kies';
snack = snack.toUpperCase();
console.log("I want " + snack);

Strings
let snack = 'coo';
snack += 'kies';
snack = snack.toUpperCase();
console.log("I want " + snack);

- Can be defined with single or double quotes
- Many style guides prefer single-quote, but there is no functionality

difference

- Immutable

- No char type: letters are strings of length one
- Can use plus for concatenation
- Can check size via length property (not function)

https://github.com/airbnb/javascript#strings
https://google.github.io/styleguide/jsguide.html#features-strings-use-single-quotes

Boolean
- There are two literal values for boolean: true and false that behave as you

would expect
- Can use the usual boolean operators: && || !

let isHungry = true;
let isTeenager = age > 12 && age < 20;

if (isHungry && isTeenager) {
 pizza++;
}

Boolean

- Non-boolean values can be used in control statements, which get converted
to their "truthy" or "falsy" value:

- null, undefined, 0, NaN, '', "" evaluate to false

- Everything else evaluates to true

if (username) {
 // username is defined

 }
 else {
 // username undefined or null or ...
 }

Equality
JavaScript's == and != are basically broken: they do an implicit type
conversion before the comparison.

'' == '0' // false

'' == 0 // true

0 == '0' // true

NaN == NaN // false

[''] == '' // true

false == undefined // false

false == null // false

null == undefined // true

Equality
Instead of fixing == and != , the ECMAScript standard kept the existing
behavior but added === and !==

'' === '0' // false

'' === 0 // false

0 === '0' // false

NaN == NaN // still weirdly false

[''] === '' // false

false === undefined // false

false === null // false

null === undefined // false

Always use === and !==
and don't use == or !=

Null and Undefined
What's the difference?

- null is a value representing the absence of a value, similar to null in
Java and nullptr in C++.

- undefined is the value given to a variable that has not been given a
value.

Null and Undefined
What's the difference?

- null is a value representing the absence of a value, similar to null in
Java and nullptr in C++.

- undefined is the value given to a variable that has not been given a
value.

- … however, you can also set a variable's value to undefined

Arrays
Arrays are Object types used to create lists of data.

// Creates an empty list
let list = [];
let groceries = ['milk', 'cocoa puffs'];
groceries[1] = 'kix';

- 0-based indexing
- Mutable
- Can check size via length property (not function)

Events

Event-driven programming
Most JavaScript written in the browser is event-driven:
The code doesn't run right away, but it executes after some event fires.

Click Me!

Example:

Here is a UI element that the user

can interact with.

Click Me!

Event-driven programming
Most JavaScript written in the browser is event-driven:
The code doesn't run right away, but it executes after some event fires.

When the user clicks the button...

Event-driven programming
Most JavaScript written in the browser is event-driven:
The code doesn't run right away, but it executes after some event fires.

Click Me!

EVENT!

...the button emits an "event," which is like an
announcement that some interesting thing has
occurred.

Event-driven programming
Most JavaScript written in the browser is event-driven:
The code doesn't run right away, but it executes after some event fires.

Click Me!

EVENT! function onClick() {
 ...
}

Any function listening to that event now executes. This
function is called an "event handler."

A few more HTML elements
Buttons:

Single-line text input:

Multi-line text input:

Using event listeners
Let's print "Clicked" to the Web Console when the user clicks the given
button:

We need to add an event listener to the button...

How do we talk to an element in HTML from JavaScript?

The DOM
Every element on a page is accessible in JavaScript through the DOM:
Document Object Model

- The DOM is the tree of nodes
corresponding to HTML elements on a
page.

- Can modify, add and remove nodes on

the DOM, which will modify, add, or
remove the corresponding element on
the page.

Getting DOM objects
We can access an HTML element's corresponding DOM object in
JavaScript via the querySelector function:

document.querySelector('css selector');

- This returns the first element that matches the given CSS selector

// Returns the element with id="button"

let element = document.querySelector('#button');

https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector

Adding event listeners
Each DOM object has the following function:

addEventListener(event name, function name);

- event name is the string name of the JavaScript event you want to
listen to

- Common ones: click, focus, blur, etc

- function name is the name of the JavaScript function you want to
execute when the event fires

https://developer.mozilla.org/en-US/docs/Web/Events

Error! Why?

 <head>

 <title>CGS 3066</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

 <head>

 <title>CSGS 3066</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

 <head>

 <title>CSGS 3066</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

 <head>

 <title>CS 193X</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

function onClick() {
 console.log('clicked');
}

const button =
document.querySelector('button');
button.addEventListener('click',
onClick);

 <head>

 <title>CS 193X</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

function onClick() {
 console.log('clicked');
}

const button =
document.querySelector('button');
button.addEventListener('click',
onClick);

We are only at the <script> tag, which is at

the top of the document… so the <button>

isn't available yet.

 <head>

 <title>CS 193X</title>

 <link rel="stylesheet" href="style.css" />

 <script src="script.js"></script>

 </head>

function onClick() {
 console.log('clicked');
}

const button =
document.querySelector('button');
button.addEventListener('click',
onClick);

Therefore querySelector returns null,

and we can't call addEventListener on

null.

Use defer
You can add the defer attribute onto the script tag so that the JavaScript
doesn't execute until after the DOM is loaded (mdn):

<script src="script.js" defer></script>

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script

Use defer
You can add the defer attribute onto the script tag so that the JavaScript
doesn't execute until after the DOM is loaded (mdn):

<script src="script.js" defer></script>

Other old-school ways of doing this (don't do these):

- Put the <script> tag at the bottom of the page
- Listen for the "load" event on the window object

You will see tons of examples on the internet that do this. They are out of
date. defer is widely supported and better.

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script
http://caniuse.com/#search=defer

Log messages aren't so
interesting...

How do we interact with the
page?

DOM object properties
You can access attributes of an HTML element via a property (field) of the
DOM object

const image = document.querySelector('img');

image.src = 'new-picture.png';

Some exceptions:

- Notably, you can't access the class attribute via object.class

Adding and removing classes
You can control classes applied to an HTML element via classList.add
and classList.remove:

const image = document.querySelector('img');

// Adds a CSS class called "active".
image.classList.add('active');

// Removes a CSS class called "hidden".
image.classList.remove('hidden');

(More on classList)

https://developer.mozilla.org/en-US/docs/Web/API/Element/classList

